
Foundations of Data Science Final Project:
The Prevalence and Impact of Major U.S. Wildfires, 1992 to 2015

Kate Lampo (kel2169)

I. BACKGROUND & RESEARCH QUESTIONS

The National Interagency Fire Center, which is housed
in Boise, Idaho, has documented data about fires in the
United States for many decades. Since 1983, there’s been an
average 70,000 fires recorded each year, which vary wildly
in intensity. While experts acknowledge that the total number
of fires each year has not increased significantly in that
time, they are much more concerned with the damage caused
by such fires. As global warming continues to worsen and
climates become warmer and more arid, many places in the
US and around the world are more susceptible to large,
uncontrollable blazes.

As a Colorado native that grew up right next to the
Rockies, the threat and impact of wildfires is something
that I’ve always been acutely aware of. My junior year of
high school, my cross country season was limited due to air
quality issues arising from local fires. My senior year, the
town over from mine experienced a devastating wildfire that
displaced hundreds, burning down the apartment building
that my parents lived in after college. As such, I’m interested
in studying trends in fire prevalence and intensity over time,
and in seeking trends that may help us mitigate damage in
the future.

Therefore, in analyzing these data, I’m hoping to answer
two crucial questions:

1) Can we predict the severity of a fire when it begins
based on factors like location, time of year, and what
caused it?; and

2) How do we expect the rate of severe fires in different
states to change in the coming years?

While much prior work exists surrounding predicting the
impact of a fire as they happen, and in studying broad trends
and fire patterns, addressing these questions has the potential
to better inform long-term infrastructure planning. If we
know that certain areas (towns, cities, states) are more prone
to fires, or that we statistically expect a given number of fires
in a month, local authorities can be better equipped to handle
these disasters, even years in advance. This analysis isn’t
intended to predict exactly when and where fires will occur—
rather, it’s focused on analyzing with as much specificity as
possible when fires are likely to happen.

II. DATA DESCRIPTION

To address these research questions, I will be using a
Kaggle data set prepared and published by Rachel Tatman in
2019. The data set pulls from several different fire reporting
sources, and serves as a comprehensive list of recorded

fires in the US between 1992 and 2015. It contains over
1.88 million entries, each of which is described using a
set of more than 35 descriptors. However, many of these
descriptors, while crucial to identifying where the data come
from (e.g. the reporting agency that recorded the fire), are
less relevant to the proposed research questions. Therefore,
for analysis, the data set is pared down to only the following
nine attributes:

• ID: (Int) A unique identification number for each fire.
• DISC DATE: (Float) The date that the fire was discov-

ered, in Julian time.
• CONT DATE: (Float) The date that the fire was con-

tained, in Julian time.
• CAUSE CODE: (Float) A numeric code denoting the

cause of the fire.
• CAUSE DESCR: (String) A string description of what

caused the fire.
• CLASS: (String) The class of the fire, which is deter-

mined by the total number of acres burned. Classes are
lettered (A: 0 to 0.25 acres; B: 0.26 to 9.9 acres; C:
10.0 to 99.9 acres; D: 100 to 299 acres; E: 300 to 999
acres; F: 1000 to 4999 acres; G: 5000+ acres

• LATITUDE: (Float) The latitude at which the fire orig-
inated.

• LONGITUDE: (Float) The longitude at which the fire
originated.

• STATE: (String) The two-letter state code for the state
in which the fire originated.

While intended primarily as a centralized database of fire
occurrences, there is clearly enough information here to also
extract basic information about fire impacts—particularly the
amount of land area burned. While this is a simplified metric
to determine the impacts of a given fire (since some large
controlled blazes have little to no human impact and are
crucial to the health of particular ecosystems), it is a good
baseline metric. These shortcomings are discussed further in
Section VI.

III. DATA CLEANING

A. Importing Data
Because of the size of the original data set, it was stored

in a .sqlite file format—–a C database engine that allows for
the storage of SQL databases in smaller archives. To begin
analysis, the data were extracted using the command-line
program sqlite3 and saved off into a .csv file. This process
is captured in Fig. 1. From there, a SQL query was used on
the .csv file to extract the fields mentioned in Section II to
a Pandas data frame.



Fig. 1. The CMD line process used to convert the original .sqlite data to
a workable .csv file.

B. Cleaning

To begin the cleaning process, the CAUSE DESCR and
CLASS columns were modified to remove inconsistencies
in the set. Grouping by CAUSE DESCR revealed that some
entries were erroneously populated with an integer cause
code instead of the string description (eg. “1.0” instead of
“Arson”). To remedy this, a desc code data frame was created
to store the relations between the numerical codes and their
corresponding descriptions. By merging this data frame with
the original fire data data frame, erroneous numeric values
were replaced by their appropriate descriptions.

Similarly, there were several CLASS values that were
populated with a numeric value (asumed to be the number of
acres burned) instead of the associated letter code. This was
remedied using slicing and a boolean mask for each category.
At this point, fires of class A, B, or C were also dropped
from the data set, since the focus of this project is large,
damaging fires, which are defined here to be 100+ acres in
size.

After cleaning the CLASS attribute, there remained a few
irreconcilable values in the STATE column (eg. “14.0”),
which were ill-defined with no clear fix. These rows were
dropped, but other rows with missing values were kept, as
the data that they contain was still useful for some analyses.

Fig. 2. The cleaned data frame, fire data cleaned.

Finally, the discovery and containment dates were con-
verted to datetime values. Using these new values, the
duration of each fire was calculated by creating a timedelta
attribute representing the difference of the two. This column
was added to the fire data dataframe in a series called

DURATION. During the conversion, many timestamps were
found to be illogical in the Julian system (eg. “2014.0”,
which would correspond to 4708 B.C.). Because it was
impossible to reconstruct a date from those values (and time
is important to this analysis), they were dropped from the
set.

The final data frame, renamed fire data cleaned, is given
in Fig. 2. It contains just over 54,000 rows, representing the
top 3% of the most destructive fires recorded in the data set’s
24-year span. Of those, 52% are class D, 26% are class E,
14% are class F, and 7% are class G.

IV. EXPLORATORY DATA ANALYSIS

Data exploration begin with identifying the most prevalent
causes of fires, which are given in Table I. Evidently, many
of the causes are undefined or miscellaneous, suggesting that
the data on the causes of fires are far from complete. This
makes it more difficult to use fire source as a predictor of
fire intensity, duration, or likelihood. Additionally, among the
sources that are defined, there’s no clear delimitation between
natural and man-made sources, both of which seem to be
equally at fault. All other fire sources (those not included in
the table) each accounted for less than 1,012 of the 54,000
large fires in the cleaned data set.

TABLE I
TABLE GIVING THE MOST COMMON SOURCES OF LARGE WILDFIRES.

Cause Description Quantity
Lightning 15944
Arson 9441
Miscellaneous 8082
Debris Burning 6247
Missing/Undefined 5805
Equipment Use 4519

Next, to better examine the distribution of fires across the
US, the number of fires in each state over the same time
period were calculated. The top seven states by number of
“G” class fires is given in Table II.

TABLE II
THE TOP SEVEN STATES WITH THE MOST CLASS G WILDFIRES.
State Class D Class E Class F Class G Total
AK 349 378 413 650 1790
CA 2122 1184 756 394 4456
ID 1062 810 693 394 2959
NV 483 416 407 295 1601
OR 638 417 353 256 1664
TX 3782 1781 798 238 6599
NM 927 710 493 236 2366

Alaska, the largest state in the US, is home to the most
G class fires–more than double California, which is the state
with the second most. However, the state with the most fires
overall is Texas, which had 6599 fires in the period of study.
Overall, the fires are concentrated in the western US, and are
larger in states with larger land mass, which is to be expected.
It’s also important to note that much of Alaska’s wilderness
is uninhabited, meaning that the fires with the most severe



Fig. 3. Map illustrating the frequency of fires in different locations, 1992-2015. Each dot represents one occurrence of a fire. Hawaii is omitted for having
only 210 total fires in that period.

human impact are likely to be found in states like California
and Texas, which are far more population dense.

Adding further to this analysis, the number of large
wildfires by type is visualized in Fig. 3. While smaller fires
occur across the contiguous US, more severe ones are clearly
more prevalent in the West and in Alaska.

Next, looking for temporal trends, we can look at the
number of fires in the dataset that occur in each month of
the year. The histogram in Fig. 4 gives the total number of
fires in the data set that fall in each month of the year (where
1:January and 12:December).

Fig. 4. Total number of fires starting in each month.

Evidently, there are more fires in the summer months,
which is to be expected given the elevated heat during those
times. However, we also see a spike in fires in March and
April, which is slightly less intuitive. This may be due to
the high winds that are characteristic of late spring in some

areas, which, when coupled with an ever-drying climate, may
contribute to higher rates of fires.

It’s also interesting to compare the duration of a given fire
to the time of year at which it started, which is visualized
in Fig. 5.

Fig. 5. Scatterplot of fire duration vs time of year, illustrating that the
longest fires occur in the Summer months.

Here, we see that, aside from there being more fires in
the summer months, those fires also tend to last longer (save
a few outliers—extremely long fires that start at any given
time of year, which are primarily Alaskan).

By calculating the average duration of each class of fire
(Table III), we can also see that there is a direct correlation
between duration and area burned, indicating that higher
class fires are more likely to occur in those same Summer
months.

Finally, we can observe trends over time in the period
accounted for by the data set. Beginning with the total



TABLE III
THE AVERAGE DURATION OF EACH CLASS OF LARGE FIRE.

Class Average Duration (days)
D 4.12
E 7.41
F 14.32
G 32.40

number of fires per year over time, we see a gradual increase
as illustrated in Fig. 6.

Fig. 6. The total number of fires per year over time.

The line of best fit on the graph can be characterized by the
function y = 30.21x− 58281 where y is the number of fires
in a given year and x is the year. This indicates an overall
increase of just 30 fires per year, which is an increase of only
about 1%. However, the relative proportion of each class of
fire over time yields a more interesting trend. Fig. 7 gives
the normalized proportion of each class of fire over time. To
produce the plot, the proportion of total fires that each class
accounted for in 1992 (58.44% D, 24.55% E, 13.14% F, and
3.87% G) was first computed. The same was done for each
subsequent year, and all values were then normalized to the
original 1992 proportion.

Fig. 7. The proportion of fires each year belonging to each class,
normalized to 1992.

Plotting these trends reveals that, although the proportion

of Class D, E, and F fires has remained relatively the same
over time, the proportion of Class G fires increased by
nearly three times between 1992 and 2015. This indicates
that, although there aren’t necessarily many more fires each
year, the ones that do occur are more likely to be highly
destructive.

V. WILDFIRE PREDICTION & ANALYSIS

Now that general trends in the data have been established,
we can move on to prediction. Both prediction analyses
discussed here focus on projecting the trends in these data
into future years to better understand the risks that wildfires
will pose. The first uses a classification tree to predict the
fire class based on other factors, and the second addresses
the number of fires per month in different states over time,
directly addressing both of the research questions posed in
Section I.

A. Predicting Severity

The first analysis predicts the severity of a fire based
on its location, cause, the day into year it began, and the
year it began. In the analysis, three different models are
used: location based on latitude and longitude, location based
on state, and location based on both. Because latitude and
longitude are continuous variables, it’s hard to use them
in this type of prediction because of the dispersion of
fires as indicated in Fig. 3. For example, a decrease in
longitude indicates that the fire is further west, where there
are generally more (and more intense) fires. However, at a
longitude of -130, for example, there are no data points (since
there are no US states there—it’s between the continental
US and Alaska). But, once longitude is low enough to be
in Alaksa, fires return again. Therefore, there is clearly no
perfect direct relation between longitude and severity as a
continuous variable would suggest.

Using state (a categorical variable) as the predictor instead
therefore may yield better results, but comes at the cost
of losing detail throughout the state. For example, again
referencing Fig. 3, we see that for states in the middle of the
country, the western edge of a state is likely more prone to
more damaging fires. Using state means that this specificity
is lost, even though it mitigates the continuous variable issue.

To conduct these analyses, state and cause values were
converted into binary columns in the data frame for use in
a decision tree analysis. Then, using an 80/20 training and
testing split, the three models were run, yielding accuracy
scores of 0.5283 (state only), 0.5176 (lat/long only), and
0.5185 (both).

While none of the models are particularly accurate, they
do offer a significant advantage over randomly guessing
(which we would expect to have an accuracy of 0.25). We
also see that the state only model is slightly more accurate
than the ones using latitude and longitude, indicating that
using continuous variables in a non-continuous context is
problematic as anticipated. Moreover, for all three models,
a maximum depth of 10 was found to produce the most
accurate results, which is demonstrative of the fact that all



types of fires can stem from all types of causes in all places,
so too many splits are detrimental to the model.

Finally, as an example of the application of the model,
the state-only version was retrained on the full data set,
then a sample point was used as a demonstration of its
shortcomings. The 2021 wildfire mentioned in Section I,
known as the Marshall fire, took place in December 2021,
and burned over 6,000 acres, making it Class G. It occured in
Boulder, Colorado, and was started by a power line. Feeding
this information into the model yields a prediction of class D,
which is grossly untrue. However, the Marshall fire is unique
in that it followed an extremely dry season in Colorado,
and was damaging largely thanks to high winds during that
time. Therefore, this test point illustrates nuance that the
model cannot capture, even though it provides some level
of accuracy in prediction.

B. Predicting the Rate of Severe Fires
Moving on to the next guiding question, the second model

aims to predict the frequency of each class of severe fire over
time in different states. This is accomplished by modifying
the data set to count the number of each type of fire in each
state, stratified by month and year. From there, a linear model
is constructed for each fire class, using month, year, and state
as inputs and the number of fires as the output. Training the
set on 80% of the data (stratified by year to ensure a full
time scale is represented) and testing it on the other 20%
yields mean squared error (MSE) values as given in Table
IV. The table also contains information about the standard
deviation σ of the residuals. For context, the mean number
of fires per month of each type is given as well.

TABLE IV
SUMMARY OF THE LINEAR MODEL FOR EACH CLASS OF FIRE.

Class MSE σ Residuals Mean # Fires
D 55.57 7.45 1.97
E 27.95 5.29 0.98
F 24.00 4.90 0.54
G 19.17 4.38 0.26

Overall, the model has residuals that are more than 300%
the mean values, indicating significant error in prediction.
However, further investigating the statistically significant
(with 95% confidence) variables in the models can uncover
some interesting trends about fire patterns over time. In this
case, the categorical variable of state has a baseline value
associated with the number of fires in Alaska, which has
average numbers of Class D, E, and F fires, but an extremely
large number of Class G variables. For Class D fires, 11
states (AL, CA, FL, ID, KY, MN, MO, MS, OK, TX, WV)
have statistically significant coefficients, all of which are
positive. This indicates that these states are more prone to
Class D fires. More than half of the months in the year
also have statistically significant coefficients (in comparison
to April, which has an above-average total number of fires
as seen in Fig. 4). Of these, March and July have positive
coefficients, indicating that Class D fires are more likely
to occur then, while December, January, May, November,
October, and September have negative coefficients.

For class E and F fires, we see a similar trend: about
half the months of the year boast statistically significant
coefficients, with March, June, July, and August having a
positive influence. For class E fires, 5 states (CA, ID, KY,
OK, TX) have statistically significant positive coefficients,
and 8 states (CO, GA, HI, LA, NC, NE, NJ, SC) have statis-
tically significant negative coefficients. For Class F fires, half
of the states have statistically significant coefficients, with a
mix between negative and positive. This trend reinforces the
idea that, while class D fires tend to occur everywhere, with
little variation between states, the higher class fires tend to
be concentrated in certain parts of the country, meaning state
has a greater influence on those models.

Finally, for Class G fires, 27 of the states have statistically
significant coefficients, while only two months (June and
August) have them, both of which are positive. Additionally,
unlike Class D, E, and F fires, the ”year” attribute is also
statistically significant for Class G fires. The coefficient is
positive, which corroborates the trend given in Fig. 7: while
the numbers of D, E, and F fires are not increasing over time,
the numbers of destructive G fires certainly are1.

VI. LIMITATIONS & CONCLUSION

As evidenced by the performance of the models in the
previous section, there are obvious limitations to fire predic-
tion using this data set. One of the major limitations of the
models arises from the information available, which doesn’t
encompass many of the factors that impact fire development.
Weather conditions, including wind, heat, and humidity, are
major drivers of fire impact, as are factors like distance
from cities are and how equipped local firefighters are.
Additionally, this analysis looks at trends on the national
level, but trends may vary from state to state—perhaps
Colorado is prone to fires in December, for example, which
is a nuance that cannot be represented here.

It’s also interesting to consider that not all fires are
necessarily bad, and using size as the only judgement of
impact is a simplified metric. Fires are actually vital to
the maintenance of healthy ecosystems, so a better, more
informed metric may consider impact to animal populations,
structure damage, or human displacement. Tracking, fighting,
and predicting wildfires is complex, nuanced, and difficult
topic, and while this analysis does a good job of capturing
the large trends, it lacks the information necessary to predict
and mange fires on a local level.

In the end, this data set and the summaries and analyses
provided in this report speak to the urgency of addressing the
rise in severe fires across the US. Data illustrating the year-
round prevalence of fires that impact nearly every state in the
country should demonstrate the need for climate mitigation
strategies and better tools for fire fighting. However, to fully
address the nuances of fires, more research on a smaller
scale needs to be conducted—research where every state and
community addresses the myriad of factors that contribute to
anticipating and mitigating fires close to home.

1While unruly to include here because of the categorical variables, full
lists of coefficients can be found in the associated Google Colab notebook.
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